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Sloan Digital Sky Survey 

“The Cosmic Genome Project” 
 

• Started in 1992, finished in 2008 

• Data is public 
– 2.5 Terapixels of images => 5 Tpx of sky 

– 10 TB of raw data => 100TB processed 

– 0.5 TB catalogs => 35TB in the end 

 

• Database and spectrograph  
built at JHU (SkyServer) 

• Now SDSS-3/4 data served from JHU 

 

 

 



Data Processing Pipelines 



Wide Range of Science 

• 5,000 publications, 200,000 citations 

• More papers from outside the collaboration 

• From cosmology/LSS to galaxy evolution, quasars, 

stellar evolution, even time-domain 

• Combination of 5-band photometry and matching 

spectroscopy provided unique synergy 

• Overall, seeing not as good as originally hoped for, 

but systematic errors extremely well understood 

• Very uniform, statistically complete data sets 

 



The Broad Impact of SDSS 

• Changed the way we do astronomy 

• Remarkably fast transition seen for the community 

• Speeded up the first phase of exploration 

• Wide-area statistical queries easy 

• Multi-wavelength astronomy is now the norm 

• SDSS earned the TRUST of the community 

• Enormous number of projects, way beyond original 

vision and expectation 

• Many other surveys now follow 

• Established expectations for data delivery 

• Serves as a model for other communities of science 



Science is Changing 

THOUSAND YEARS AGO 

science was empirical  

describing natural phenomena 

LAST FEW HUNDRED YEARS 

theoretical branch using models, 

generalizations 

LAST FEW DECADES 

a computational branch simulating  

complex phenomena 

TODAY 

data intensive  science, synthesizing theory,  

experiment and computation with statistics   

►new way of thinking required! 
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Gray’s Laws of Data Engineering 

Jim Gray: 

• Scientific computing is revolving around data 

• Need scale-out solution for analysis 

• Take the analysis to the data! 

• Start with “20 queries” 

• Go from “working to working” 

 



How Do We Prioritize? 

• Data Explosion: science is becoming data driven 

• It is becoming “too easy” to collect even more data 

• Robotic telescopes, next generation sequencers, 

complex simulations 

• How long can this go on? 

 

• “Do I have enough data or would I like to have 

more?” 

• No scientist ever wanted less data…. 

• But: Big Data is synonymous with Dirty Data 

• How can we decide how to collect data that is more 

relevant ? 

 



SDSS 

2.4m  0.12Gpixel 

PanSTARRS 

1.8m  1.4Gpixel 

LSST 

8.4m  3.2Gpixel 



Survey Trends 
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T.Tyson (2010) 



Decision Making in Science 

• Traditionally: human scientists decide what 

experiments to do next 

• SDSS Example: the Black Book 

– Optimization and tradeoffs were done  by committee 

– In the end >5000 publications, many outside the team 

– Many science projects were never thought of 

• Given the huge amounts of data, the possible 

number of new experiments and analyses explodes 

• But: we cannot do it all, we cannot foresee it all! 

• Need to involve intelligent tools aiding the scientist 

 

 



What Will the 5th Paradigm Be? 

• Next step: not just discovery but experiment design!!! 

 

• Probabilistic approach to everything 

• Accelerated design cycles 

• Clear cost function driving tradeoffs 

• How to collect more relevant data? 

 

The systematic involvement of computational statistics and 

optimizations in the design of the next generation of 

“experiments”: 

prediction/Inference/UQ + design/synthesis/fabrication 

 



How to Do with Less Data? 

• Collect less but more relevant data 

– Use active learning 

– Compressive sensing: nature is sparse 

– Random sampling of long tails: stratified sampling 

• Streaming, sublinear randomized algorithms 

– Streaming look at simulations as well 

– Not just sequence of snapshots, but world-lines 

• Automation, machine learning to find relevant data 



Probabilistic Approach 

• Time-to-result: how to trade speed for accuracy 

– statistical and algorithmic challenges 

– statistical vs systematic errors 

– best result in 1 min, 1 hour, 1 day 

– Cost of computing is becoming a significant factor 

• Simulations: how to do better UQ 

– from single large realization to ensembles  

(Coyote Universe, INDRA) 

– sparsely sampled outputs 

• Experiments 

– from driven by “feeling” (and experience) to objective 

design based on statistics, automated choice of parameters 

– Ensembles of experiments optimally sampling parameters 

 

 

 



Active Learning 

• Given our existing data, of all possible experiments 

which would yield the most new information? 

• Ross King (2004) drug design study: 

– Adam, the Robot Scientist 

• Personalized Medicine 

• Finding patterns in large scale simulations 

 



Applications of ML to Turbulence 

 

clustering,  

classification,  

anomaly detection 

Similarity between regions  

? 

Vorticity 

J. Schneider, B. Poczos, CMU 

Renyi 

divergence 



Nature is Sparse 

• Many natural processes are dominated by a few 

processes and described by a sparse set of 

parameters 

• Compressed Sensing has emerged to identify in high 

dimensional data sets the underlying sparse 

representation (Candes, Donoho, Tao, et al) 

• This enables signal reconstruction with much less 

data! 

• The resolution depends not on the pixel count but on 

the information content of an image… 

 



Compressed Sensing 

• Example: sparse signal sampled randomly in Fourier 

space 

Donoho, Candes, Tao… 



Principal component pursuit 

• Low rank approximation of data matrix: X  

• Standard PCA: 

 

– works well if the noise distribution is Gaussian 

– outliers can cause bias  

• Principal component pursuit 

 

– “sparse” spiky noise/outliers: try to minimize the number  
of outliers while keeping the rank low 

– NP-hard problem 

 

• The L1 trick: 

 

– numerically feasible convex problem (Augmented Lagrange Multiplier) 
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• Slowly varying continuum + 
absorption lines 

• Highly variable “sparse” 
emission lines 

• This is the simple version of 
PCP: the position of the lines 
are known 

• but there are many of 
them, automatic 
detection can be useful 

• spiky noise can bias 
standard PCA 

 

 

DATA: 
Streaming robust PCA implementation for  
galaxy spectrum catalog (L. Dobos et al.) 

SDSS 1M galaxy spectra 
Morphological subclasses 
Robust averages + first few PCA directions 

 

Testing on Galaxy Spectra 



Streaming PCA 

Mishin, Budavari, Ahmad and Szalay (2012) 

• Initialization 
– Eigensystem of a small, random subset 

– Truncate at p largest eigenvalues 

 
 

• Incremental updates 
– Mean and the low-rank A matrix 

– SVD of A yields new eigensystem 
 

 

• Randomized sublinear algorithm! 



PCA 

PCA 
reconstruction 

Residual 



Principal component pursuit 

Low rank 

Sparse 

Residual 

λ=0.6/sqrt(n),  ε=0.03 



• HPC is an instrument in its own right 

– Soon largest simulations exceed several petabytes 

– Directly compare to the experiments 

• Need public access to the best and latest 

– Cannot just do in-situ analyses 

• Also need ensembles of simulations for UQ 

• Creates new challenges 

– How to access the data? 

– What is the data lifecycle? 

– What are the analysis patterns? 

– What architectures can support these? 

 

 

Numerical Simulations 



Immersive Turbulence 

“… the last unsolved problem of classical physics…” Feynman 

• Understand the nature of turbulence 

– Consecutive snapshots of a large  

simulation of turbulence: 30TB 

– Treat it as an experiment, play with 

the database!  

– Shoot test particles (sensors) from  

your laptop into the simulation, 

like in the movie Twister 

– 50TB MHD simulation 

– Channel flow 100TB, MHD 256TB 

• New paradigm for analyzing simulations! 

 

 
with C. Meneveau (Mech. E), G. Eyink (Applied Math), R. Burns (CS) 



Daily Usage 

2015: exceeded 14T points, delivered publicly 



Cosmological Simulations 

In 2005 cosmological simulations had 1010 particles and  

produced over 30TB of data (Millennium) 

http://gavo.mpa-garching.mpg.de/Millennium/ 

• Build up dark matter halos 

• Track merging history of halos 

• Use it to assign star formation history 

• Combination with spectral synthesis 

• Realistic distribution of galaxy types 

 

Today: simulations with ~1012 particles and almost PB of output are 

under way (MillenniumXXL, DEUS, Silver River, etc) 

• Hard to analyze the data afterwards -> need DB 

• What is the best way to compare to real data? 

http://gavo.mpa-garching.mpg.de/Millennium/
http://gavo.mpa-garching.mpg.de/Millennium/
http://gavo.mpa-garching.mpg.de/Millennium/


Numerical Laboratories 

• Similarities between Turbulence/CFD, N-body, ocean 
circulation and materials science 

• Differences as well in the underlying data structures 

– Particle clouds / Regular mesh / Irregular mesh 

• Innovative access patterns appearing 

– Immersive virtual sensors/Lagrangian tracking 

– Posterior feature tagging and localized resimulations 

– Machine learning on HPC data 

– Joins with user derived subsets, even across snapshots 

– Data driven simulations/feedback loop/active control of sims 

• On Exascale everything will be a Big Data problem 

• Memory footprint will be >2PB 

• With 5M timesteps => 10,000 Exabytes/simulation 
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LHC Lesson 

• LHC has a single data source, $$$$$ 

• Multiple experiments tap  

into the beamlines 

• They each use in-situ hardware  

triggers to filter data 

– Only 1 in 10M events are stored 

– Not that the rest is garbage,  

just sparsely sampled 

• Resulting “small subset” analyzed many times off-line 

– This is still 10-100 PBs 

• Keeps a whole community busy for a decade or more 



Exascale Simulation Analogy 

• Exascale computer running a community simulation 

• Many groups plugging their own “triggers” (in-situ), 

the equivalents of “beamlines” 

– Keep very small subsets of the data 

– Plus random samples from the field 

– Immersive sensors following world lines or light cones 

– Burst Buffer of timesteps: save precursor of events 

• Sparse output analyzed offline by broader community 

• Cover more parameter space and extract more 

realizations (UQ) using the saved resources 



Disruptive Technologies 

Intel Xpoint 3D SSD 



Summary 

• Computations even closer to the data 

• Cannot afford to store all the incoming data 

• Razor sharp tradeoffs, based on algorithms 

• Sharp awareness of systematic errors 

• Active learning, compressed sensing 

• What comes after Data Driven Discoveries  

(the 4th Paradigm)? 

• Exascale simulations become a challenge 

• Human aided machine learning becomes  

part of the scientific process 

• Data deluge still getting bigger… 

 




